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Fixing van Inwagen's Modal Argument for Incompatibility

1 Introduction
In An Essay on Free Will, van Inwagen introduced his famous modal argument for

the incompatibility between free will and determinism, which involves a flavor of

modal propositional logic with two new inference rules and one more modal op-

erator he proposed, namely rule-𝛼, rule-𝛽, and the operator 𝑁 . This argument has

enabled us to think about these issues in a whole new way with the tools of modal

logic. However, van Inwagen’s modal argument, though inspiring, has been shown

to have several issues. First, as he noticed himself, his argument involves a system

of modal logic that is not fully constructed. It does not have formal semantics, and

the soundness of the rules he proposed is not formally justified. What’s worse, as

pointed out by Warfield (2000), the conclusion yielded by van Inwagen’s modal ar-

gument is “strictly weaker than the proper incompatibilist position (INC).”

In this paper, we will begin by briefly considering van Inwagen’s original

modal argument, which shall show us why its conclusion is strictly weaker than

the proper one. After that, we will try to fully construct a system of modal propo-

sitional logic with 𝑁  with well-defined syntax, semantics, and a deduction system

slightly different from van Inwagen’s. To have such a deduction system, we begin

by considering a frame condition and see that this is a reasonable assumption to

make in our reasoning about choice. Then we will present the rules of the deduc-

tion system, such that for frames satisfying this frame condition we will see how

our deduction system proves to be sound. And within that system, we will formu-

late a proof of incompatibility in the stronger sense, but still in van Inwagen’s style.
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Thus, we get to show the proper incompatibilist position with proof in a sound

deductive system (for frames of a specific but, at least from my expectation, very

acceptable frame condition). Finally, we will consider possible objections to this

argument.

2 What’s Wrong with van Inwagen’s Argument?
In the deduction system proposed by van Inwagen with rule-𝛼 (□𝜑 ⊢ 𝑁𝜑) and rule-

𝛽, the following can be proven:

□((𝑃0 ∧ 𝐿) → 𝑃), 𝑁𝑃0, 𝑁𝐿 ⊢ 𝑁𝑃

However, as Warfield pointed out, this is weak: For us to get 𝑁𝑃 , it is required for

all worlds in the frame to have the same law of nature 𝐿 and some shared past state

𝑃0. For example, consider the following model ℳ1, in which solid lines stand for

the accessibility relation of □, and dashed lines for that of 𝑁 . 𝐿0 and 𝐿1 represent

different conjunctions of the law of nature. □((𝑃0 ∧ 𝐿0) → 𝑃) is true for all worlds

in this model and is omitted for brevity.

𝑤0

L0, P0

𝑤1

L0, P0

𝑤2

L1, P0

Figure 1: ℳ1 = (𝑊, 𝑅□, 𝑅𝑁 , 𝑉 )
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We can see that though ℳ1, 𝑤0 ⊩ 𝑁𝐿0 ∧ 𝑁𝑃0 ∧ □((𝑃0 ∧ 𝐿0) → 𝑃), van Inwagen’s

conclusion does not assure that ℳ1, 𝑤0 ⊩ 𝑁𝑃  even if his deduction system is sound,

since it is not the case that (𝑊, 𝑅□, 𝑅𝑁) ⊩ 𝑁𝐿0.

In the rest of this paper, we will attempt to formulate a formal and stronger

version of van Inwagen’s argument, with the proper incompatibilist position (INC)

proven.

3 The Modal Operator N, Formally Defined
3.1 Syntax

Definition 3.1.1 :

The syntax for the formula in this logic can be defined in BNF form as fol-

lows:

𝜑 ≔ 𝑝 | ¬𝜑 | 𝜑 → 𝜑 | 𝜑 ↔ 𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | □𝜑 | ◇𝜑 | 𝑁𝜑

3.2 Semantics
Van Inwagen frames the meaning of his modal operator 𝑁  as follows: for any

proposition 𝑝, 𝑁𝑝 means “𝑝 and no one has, or ever had, about whether 𝑝”.¹

¹van Inwagen, An Essay on Free Will, p. 93

To capture this, we first define the accessibility relation for 𝑁  as follows:

Definition 3.2.1 :

𝑅𝑁 ⊂ 𝑊 × 𝑊  is a binary relation such that 𝑤𝑅𝑁𝑤′ iff 𝑤′ is can be reached from

𝑤 with and/or without the choice of someone in 𝑤.

With 𝑅𝑁 , the semantics of 𝑁  can be defined formally as follows:
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Definition 3.2.2 :

For a Kripke model ℳ = (𝑊, 𝑅□, 𝑅𝑁 , 𝑉 ) where 𝑊  is the set of worlds, 𝑅□ is the

accessibility relation for the broad logical necessity modal operator □, 𝑅𝑁  is

the accessibility relation for 𝑁 , and 𝑉  is a valuation:

ℳ, 𝑤 ⊩ 𝑁𝜑 iff ∀𝑤′ ∈ 𝑅𝑁 [𝑤].ℳ, 𝑤′ ⊩ 𝜑

I believe this semantics captures van Inwagen’s conception of 𝑁 , because:

1. By the definition of 𝑅𝑁 , we have ∀𝑤 ∈ 𝑊.𝑤 ∈ 𝑅𝑁 [𝑤]. Thus this formal semantics

of 𝑁  defined here captures the first part of van Inwagen’s formulation (before

the word “and”), i.e., 𝑤 ⊩ 𝑁𝜑 implies 𝑤 ⊩ 𝜑.

2. For the second part of his formulation (after the word “and”), observe that when

all worlds than can be reached with and/or without the choice of someone in 𝑤

force 𝜑, nobody has or ever had any choice about whether 𝜑.

4 Frame Condition N
Definition 4.1 :

For a Kripke frame (𝑊, 𝑅□, 𝑅𝑁) where 𝑊  is the set of worlds, 𝑅□ is the accessi-

bility relation for □, and 𝑅𝑁  is the accessibility relation for N, the Frame Con-

dition N is

∀𝑤 ∈ 𝑊.𝑅𝑁 [𝑤] ⊂ 𝑅□[𝑤]

A Kripke frame satisfying Frame Condition N is called an N-Frame in this pa-

per.

4.1 Can we accept this frame condition?
Since □ represents broad logical necessity, for any world 𝑤 it should be understood

that 𝑅□[𝑤] is the set of worlds possible in the broad logical sense. If that is the case,

to assert Frame Condition N would be no more than to assert that for any world
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𝑤′ that can be reached from 𝑤 with or without the choice of someone, 𝑤′ must be

possible in broad logical sense, which is an acceptable assumption to make.

5 From Axiom-N to System-N
5.1 Soundness of Axiom-N

Theorem 5.1.1 (Axiom-N):

⊩𝑵 □𝜑 → 𝑁𝜑

Proof :  Let (𝑊, 𝑅□, 𝑅𝑁) be an N-Frame, where 𝑊  is the set of worlds, 𝑅□ is

the accessibility relation for □, and 𝑅𝑁  is the accessibility relation for 𝑁 .

Let 𝜑 be any formula of modal propositional logic. We will show that ∀𝑤 ∈

𝑊.𝑤 ⊩ □𝜑 → 𝑁𝜑. To do so, let 𝑤 be a world in 𝑊  and assume that 𝑤 ⊩ □𝜑. We

will show that 𝑤 ⊩ 𝑁𝜑. Note that by the semantics of the □ operator, ∀𝑤′ ∈

𝑅□[𝑤].𝑤′ ⊩ 𝜑. By Definition 4.1, 𝑅𝑁 [𝑤] ⊂ 𝑅□[𝑤]. Thus ∀𝑤′ ∈ 𝑅𝑁 [𝑤].𝑤′ ⊩ 𝜑. By the

semantics of the 𝑁  operator, 𝑤 ⊩ 𝑁𝜑. ∎

5.2 Correspondence
Theorem 5.2.1 :

For any Kripke frame (𝑊, 𝑅□, 𝑅𝑁) where 𝑊  is the set of worlds, 𝑅□ is the

accessibility relation for □, and 𝑅𝑁  is the accessibility relation for 𝑁 , if

(𝑊, 𝑅□, 𝑅𝑁) ⊩ □𝜑 → 𝑁𝜑, then ∀𝑤 ∈ 𝑊.𝑅𝑁 [𝑤] ⊂ 𝑅□[𝑤].

Proof :  Let (𝑊, 𝑅□, 𝑅𝑁) be a Kripke frame where 𝑊  is the set of worlds, 𝑅□

is the accessibility relation for □, and 𝑅𝑁  is the accessibility relation for 𝑁 .

Assume (𝑊, 𝑅□, 𝑅𝑁) ⊩ □𝜑 → 𝑁𝜑. Let 𝑤 be any world in 𝑊 , we will show that

𝑅𝑁 [𝑤] ⊂ 𝑅□[𝑤]. Let 𝑉 (𝑝) = 𝑅□[𝑤] be a valuation and ℳ = (𝑊, 𝑅□, 𝑅𝑁 , 𝑉 ) be a

Kripke model. By the assumption, ℳ, 𝑤 ⊩ □𝑝 → 𝑁𝑝. Since 𝑉 (𝑝) = 𝑅□[𝑤], ∀𝑤′ ∈

𝑅□[𝑤].ℳ, 𝑤′ ⊩ 𝑝. So, by the semantics of □, we have ℳ, 𝑤 ⊩ □𝑝. Then, by the

semantics of the conditional, we have ℳ, 𝑤 ⊩ 𝑁𝑝. Thus by the semantics of 𝑁 ,
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we have ∀𝑤′ ∈ 𝑅𝑁 [𝑤].ℳ, 𝑤′ ⊩ 𝑝. That is to say, 𝑅𝑁 [𝑤] ⊂ 𝑉 (𝑝). Therefore by the

definition of 𝑉 (𝑝), 𝑅𝑁 [𝑤] ⊂ 𝑅□[𝑤]. ∎

Theorem 5.2.2 (Correspondence):

(𝑊, 𝑅□, 𝑅𝑁) ⊩ □𝜑 → 𝑁𝜑 iff ∀𝑤 ∈ 𝑊.𝑅𝑁 [𝑤] ⊂ 𝑅□[𝑤]

Proof :  Two directions of this biconditional are shown by Theorem 5.1.1 and

Theorem 5.2.1. ∎

With the correspondence theorem, we can see how Frame Condition N is not only

a sufficient condition for Axiom-N, but also a necessary one.

5.3 System-N

5.3.1 Definition

Definition 5.3.1.1 :

System-N is the deduction system formed by adding Axiom-N to System-K:

𝜑 ⊢ □𝜑 Nec

𝜑, 𝜑 → 𝜓 ⊢ 𝜓 Modus Ponens

□𝜑 → 𝑁𝜑 Axiom-N Schema

□(𝜑 → 𝜓) → (□𝜑 → □𝜓) Axiom-K Schema for □

𝑁(𝜑 → 𝜓) → (𝑁𝜑 → 𝑁𝜓) Axiom-K Schema for 𝑁

Any tautology of classical propositional logic is an axiom PL

5.3.2 Soundness

Theorem 5.3.2.1 :

For any formula of modal logic 𝜑,

If ⊢𝑁 𝜑 , then ⊩𝑁 𝜑.
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Proof :  With Theorem 5.1.1, the soundness of System-N in N-Frames can be

shown similarly to the proof of that of System-K. Consider the proof for the

Soundness Theorem of System-K (as in Lecture Note 9.3). By adding Axiom-

N to the base case and the first subcase of the induction step, and repeating

subcase 3 but for the modal operator 𝑁  instead, we get proof for the sound-

ness of System-N. ∎

6 A Stronger Argument, in System N
Theorem 6.1 :

⊢𝑵 □((□((𝑃0 ∧ 𝐿) → 𝑃) ∧ 𝑁𝑃0 ∧ 𝑁𝐿) → 𝑁𝑃)

Proof :

1.(□((𝑃0 ∧ 𝐿) → 𝑃) ∧ 𝑁𝑃0 ∧ 𝑁𝐿) → □((𝑃0 ∧ 𝐿) → 𝑃) PL

2.(□((𝑃0 ∧ 𝐿) → 𝑃) ∧ 𝑁𝑃0 ∧ 𝑁𝐿) → 𝑁𝑃0 PL

3.(□((𝑃0 ∧ 𝐿) → 𝑃) ∧ 𝑁𝑃0 ∧ 𝑁𝐿) → 𝑁𝐿 PL

4.((𝑃0 ∧ 𝐿) → 𝑃) → (𝑃0 → (𝐿 → 𝑃)) PL

5.□(((𝑃0 ∧ 𝐿) → 𝑃) → (𝑃0 → (𝐿 → 𝑃))) Nec 4

6.□(((𝑃0 ∧ 𝐿) → 𝑃) → (𝑃0 → (𝐿 → 𝑃))) → (□((𝑃0 ∧ 𝐿) → 𝑃) → □(𝑃0 → (𝐿 → 𝑃))) 𝐾□

7.□((𝑃0 ∧ 𝐿) → 𝑃) → □(𝑃0 → (𝐿 → 𝑃)) MP 5, 6

8.□(𝑃0 → (𝐿 → 𝑃)) → 𝑁(𝑃0 → (𝐿 → 𝑃)) 𝑁

9.𝑁(𝑃0 → (𝐿 → 𝑃)) → (𝑁𝑃0 → 𝑁(𝐿 → 𝑃)) 𝐾𝑁

10.(□((𝑃0 ∧ 𝐿) → 𝑃) ∧ 𝑁𝑃0 ∧ 𝑁𝐿) → (𝑁𝑃0 → 𝑁(𝐿 → 𝑃)) PL 1, 7, 8, 9

11.(𝜑 → 𝜓1) → ((𝜑 → (𝜓1 → 𝜓2)) → (𝜑 → 𝜓2)) PL

12.((□((𝑃0 ∧ 𝐿) → 𝑃) ∧ 𝑁𝑃0 ∧ 𝑁𝐿) → (𝑁𝑃0 → 𝑁(𝐿 → 𝑃)))

→ ((□((𝑃0 ∧ 𝐿) → 𝑃) ∧ 𝑁𝑃0 ∧ 𝑁𝐿) → 𝑁(𝐿 → 𝑃)) MP 2, 11

13.(□((𝑃0 ∧ 𝐿) → 𝑃) ∧ 𝑁𝑃0 ∧ 𝑁𝐿) → 𝑁(𝐿 → 𝑃) PL 10, 12

14.𝑁(𝐿 → 𝑃) → (𝑁𝐿 → 𝑁𝑃) 𝐾𝑁

15.(□((𝑃0 ∧ 𝐿) → 𝑃) ∧ 𝑁𝑃0 ∧ 𝑁𝐿) → (𝑁𝐿 → 𝑁𝑃) PL 13, 14

16.((□((𝑃0 ∧ 𝐿) → 𝑃) ∧ 𝑁𝑃0 ∧ 𝑁𝐿) → (𝑁𝐿 → 𝑁𝑃))

→ ((□((𝑃0 ∧ 𝐿) → 𝑃) ∧ 𝑁𝑃0 ∧ 𝑁𝐿) → 𝑁𝑃) MP 3, 11

17.(□((𝑃0 ∧ 𝐿) → 𝑃) ∧ 𝑁𝑃0 ∧ 𝑁𝐿) → 𝑁𝑃 MP 15, 16

18.□((□((𝑃0 ∧ 𝐿) → 𝑃) ∧ 𝑁𝑃0 ∧ 𝑁𝐿) → 𝑁𝑃) Nec 17
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Note that the 𝜑 and 𝜓 used in this proof are merely for space saving. It

shall be trivial to see how they can be substituted by concrete instances of

formulae of modal logic for the tautology to be used in different contexts of

the proof.

∎

Corollary 6.1.1 :

By Theorem 5.3.2.1 and Theorem 6.1,

⊩𝑵 □((□((𝑃0 ∧ 𝐿) → 𝑃) ∧ 𝑁𝑃0 ∧ 𝑁𝐿) → 𝑁𝑃)

i.e., in N-Frames, necessarily, if determinism is true, and no one has or ever

had any choice about the truth of 𝑃0 and 𝐿, then no one has or ever had any

choice about 𝑃 ; i.e., in N-Frames, necessarily, if determinism is true then there

is no freedom. Thus, Warfield’s INC is proven in N-Frames: As long as one as-

serts that nobody’s action can or ever could render their world impossible in

the broad logical sense, one would have to agree with the truth of INC.

7 Possible Objections
There are two objections that I can think of:

1. This proof still forces a specific set of natural laws 𝐿 and a shared past state 𝑃0.

2. Determinism doesn’t require the strict conditional □((𝑃0 ∧ 𝐿) → 𝑃); instead,

something like a Lewisian counterfactual (𝑃0 ∧ 𝐿)□→ 𝑃  would be enough. Thus,

even though the proof is valid, it does not really show incompatibility.

For (2), I do not have a good response in mind for now. If you believe that deter-

minism doesn’t require the strict conditional, you can consider our argument to

be one with a weaker conclusion for the incompatibility between free will and a

specific kind of determinism. But for (1), notice that for each world 𝑤 with a set

of law of nature 𝐿𝑤 and distant past 𝑃0𝑤, we can construct the same proof with 𝐿
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replaced by 𝐿𝑤 and 𝑃0 replaced by 𝑃0𝑤. The conjunction of the conclusion of all

these proofs should fully address the concern of (1).
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